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Applications of the Kac-Siegert Method for Finding Output Probsbility

Densities for Receivers with Square lLaw Detectors

R. C. Emerscn

The RAND Corporation
Sants Monica, Califormia

\ Abetract

The method of Kic and Slogert for finding the output prcbability density
characteristic function for receivers with square liaw envelcpe detections is
discusesd and a parallel development is given for the square law rectifier,
Procedures are then outlined for determining the probability density functions
directly, i.e., without solving the eigenvaiue protlem or inverting the charac-
teristic function. The method depends on expanding the density functicn in
an orthonormal series the coefficients of which are expressed in terms of
cumulants which in turn are obtained from the system kernel by straightforward
quadratures.

As an example to illustrate the procedure, a receiver with Gauasian I.F.
and Gaussian audio frequency pass characiteristics is trested in detall, and
ths output probability density functions are found for various sinusoidal input
signal strengths and I.F. vs, audio pandwidth ratioa.




List of Symbols

Ei(t) 1.F, innut wvoltage
E(t) 1.F. ouitput (detector input) voltage
Ez(t) Detector output audio input) voltage
Eo(t) Audio output voliage
?if(w) 1.F. voltage transfer function
fif(t) Fourier transform of Fir(aﬁ
Fa(u) Audis voltage transfer function
fa(t) Fourier trunsform of Fa(@)
glu,v) System kernel defined by ejustion (5)
hjku) jgﬁ normal eigenfunction of g(u,v)
- kj Eigenvalue corresnonding to hjgu)
. ej(t) Component of Ei(t) along hj(x) (see equation (1C)})
s S{t) Signal component of Ei(t)
) ) .
Nit) Noise component of Ei\t)
sj(t) Signal component of eJ(t) (see equation (13)})
nj(t) Noise component of ejkt) (see equation (14))
¢° I.F. input noise power per unit frequency
i
3 : : ;(s.t) Characteristic function of the probability density of Eo\'t.)
5 ignal Power at input to the detector

w
[9)]

N Noise Power 3t inout to the datector
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Jist of Symbols (Cont,)

3ignal-to-noise power ratio ut input to the detector
Audio output voltage measured in units of N

th .

n=—- cumulant (defined by equation (33))
n times iterated kernel {(defined by equation (35))
Bandwidth measure for Gaussian I.F. amplifier
Bandwidth measure for Gaussian audio amplifier

o/
Noise Bundwidth of I.F. amplifier

th ., . . ,

J— Hermite polynomial {defined by equation (74)) .
Center frequency of the I.F. amplifier

First cutput cumulant for signal plus noise

First output cumulant for noise alone
Second output cumulant for signal plus noise
Second cutput cumulant for noise alone

Detectability criteria (seeeguations {7y} and (80))




‘ntrocduction

The upper limit on radio receiver performance is often determined by
the ability of the ejuicment to detect wezk signals in the vresence of system,
or pre-system noise, Cince this noise is basically random in its fine struc-
ture, the degree of signal contamination und consequent e.uipment malfunction
must be described stutistically, i.e., by means of expectations, probability
distributions, etc, Considerable attention has been given in recent years te
statistical analysis of electronic circuitry and particularly, bectuse of the
common re..uirement for "detectors" in systems, to non-linear circuits., Some

(1) wyqar0ton, ¢2)

of the names in the literature associated with th.s work are Rice,
. ) { &
North,(B) Van Vleck,‘z) !arcum,(a) Goudsmit,(s) Fubini,(é’ and Johnacn‘c) &

well as Smithk7) in tngiend to mention only a few.

(1) S. 0. Rice, "Mathematical Analysis of handom Noise," Bell Sysi. Tech,
Jour., 23, 282 (1¥44); 25, 46 (1945).

(2) J. H. Van Vleck and 0. Middleton, "Theory cf the Visual vs. Aural or Meter
heception of hadar Signals in the Presence of Noise." R.R.L. heport No. 411-86,
Eay lyii.

71
) D. 0. North, "analysis of the Factcrs which Determine Signal/Noise Discri-
mination in haaar," R.C.». Technical Report PTR 6-C, June 1343,

&, J. I. Marcum, n Statistical Theory of Target Detection by Pulsed Radar:
Mathematical Appendix, The RAND Corporatlon, Research Memorandum RM-53, July 1,

1vs48.

(5) 5. .. Goudsmit, "Stetistics of Circuit N-ise," R.R.L. Report No. 43-20, Jan.
1743,

\®) §. G. Fubini snd D. C. Johnson, "3i-nal-to-Noise iatio in A.M. Modulated
Receivers,"” Proc. l.R.L., Vol. 8¢, Deec. 148, pp. 1461-14€7.

(7) R. A. Smith, "The Helative Advantages of Coherent and Incoherent Detectors:
Z A Study of Their Output Noise Spectra under Various Conditions,”™ TRE Technical
Note No. v5.
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The springboard for this puaper is a work by VM. Kac and A.JnF.,Siggert (8)

who have investigated the statistical effects ol uncorrelated Uaussian (white’
noise with and without signal for a system comprising an I.F. amplifier, a
square law envelops dstscior, und an audio amplifier. They have derived an exact
formula for the first rrobability distribution of the output voltage for such a
system-—an important result cecuusc o7 its generality both with respect to I.F.
and audio pass cand cnharacteristics, and the unrestricted form of vhe 3ignal
wave assumed, Their expression for the probability distribution is, however,
unsuitable for most engineering applications, first, because it depends on
inverting a rother complicuted characteristis function which may not be possible
in closed form, and, secondly, the explicit expression for the characteristic
function depends on the solution of s certain eigenvalue vroblem which none

out the most experienced in dealing with integral equations are equipped to
solve,

Tnis paper provides . means for using the Kac-Siegert method in its widest
generality without the necessity of finding eigenvalues, =nd without dealing
with the characteristic function at all., It depends on the fact that ine
cupulants of the output distribution are rather simply related to the system
operator so thut by employing any of the well-known orthonormal systems for
expanding density functions, i,e.,, Gr.m—Charlier, laguerre, et:,, one may
compute the output probability distribution to any desired degree of accuracy
by straightforward techni ues, The procedure is illustrated in Seciion IV

for a aystex in which the I.F. and audio amplifiers possess Gaussian band pass

characteristics of arbitrary bandwidth.

.8)

\8) M. Kazc and A.J.F. Siegert, "On the Theory cof Noise in Radio Receivers
with Square Law Detectors,” J. Applied Physics, Vol. 18, pp. 383-3y7, April,
1747,




This Sreatment will depart from that cf Kac and Sicgert in one importaat

respecl., AS wdas previcusly mentioned, their detector is an "envelope detector,®
that is, it consists of a square law rectifier followed by an appropriate
smoothing circuit to attenuate the high frequency resicue, Tnis action is
accomplished mathemat.c:illy by resolving the input voltage into sine and cosine
components which are then sjvared and added to give the output wvoltuge. This
approach appears to he 3 carry-over from the originul derivations of the detector
output probability density where no separate audio amnlifier is considered,
Since this treatment is to include audio filtering as a specific¢ function, the
stosthing circuitry referred to above will be included in the audio filter,

This ooint of view leads to a great simplification of the mathematics, In
addition, the theory will be slightly more flexible since it will be possible
by remnving the sudio amplifier completely to determine tre probability density
functicn for the detector alone, i.e., without smoothing circuits, or to obtain

the result of Kac and Siegert by modifying the audio filter so as to account

for the additional smoothing action,

']
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Section I
The System Cperator
Figure (1) illustrstes the system under investigation.
1F Square 2 Audio o7
E;{t)— amphfier ——~E (t)-— low —— £° (1) — video Eo(t)
. detector omplifier
f.¢ (1) f, (1)
F.¢ (W) Folw)

Figure 1)

The I.F., arrlifier is characterized by the voltaze-freuusncy function

F, ,) and/or its Fourier transform fir(t) ; similarly for the audic amrlifier.

if
The voltage, F(t), applied to tke s, uare law detector is siven by the familiar
formula,

®
E(t) = J/ﬂ fif(t-x) Ei(x)dx (1)
-0

The cutput, Ezit), of the detector is obtained by sjuaring the inrut. It may

be expressed by the double integral formula,

a0

2 =

E7(t) -// fif\t-x)Ei(x) E, y) fif(t-y)dxdy (2)
- 00

This voltage is applied to the audio amplifier, The output voliage of this

amrlifier is given by the linear operation,

o
Eo(t) - _Jﬁ; fa(t—x)Ez(x)dx (3)
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On substituting from eguation {2) and after making certain substitutions
of va:iatles, one obtains the following formula for the output in terma of

the input voltage:

®
E,(t) -/9/ Eﬁ(t-u) giu,v) Ei(t-v) dudv ) (&)
-00
where,
00
giu,v) = J/ foplu=z) £,(2) £ (v-z) dz (5)
-0

Tquation (4) r.h.s, is the system operator, and the function g(u,v), the syatem
xernel,

One comment concerning the limits 5f integration seems in order at this
point, The realizability of the I.F, and audio filters implies their inability

to predict; consequentlv, the functions f, , and ta vanish for negative arguments

if
and sc the intesrala may be extended over the entire time domain., Notice ziso
that the so-called "high freyuency terms" produced by frequencr addition in

the detector have not been neglected. They are included in Eo(t) to “he extent
they ure passed by the audio amplifier. This residue need not be given special
attertion in the derivation of the characteristic function, tut may be discarded

later on if desired.

Expansion of the System Kernel

The nexw. step in the development is to expand the function giu,v) into

the uniformly convercent bilinear series,

glu,v) = 3, A, h,(u) h (v) (6)
3 373 J

where the h,(x) and A\, are respectively the jsﬁ normal orthogonal eigenfunction
J

3

({,fg o e vn“;‘ﬁ
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and corresponding eigenvalue of the integral equation
o -
. Ab(x) = / f("{) )y, . (D .

For such an expansion to exist it is sufficient, first, that g(u,v) be
symmetric which can be verified by appealing to equation (5), and secondly,
that g(u,v) be positive semi-definite, On referrin: to equation (4) it will
be verified that g(u,v) will be positive semi-definite if for all input func-
tions, Ei' the output is non-negative. Since the detector output is always
non-negative, one has as a sufficient condition for positive semi-definiteness

on g(u,v) that,
ra(x)-.\n (8) |

This restriction on the sudio amplifier characteristic may uctually be too
stringent for particular I,F. amplifiers, but it will be carried along in order
to guarantee the validity of the general result,

On substituting equation (6) into equation (4) the system operator reduces

to )
E(t) = T ay[ey(e)]? (9)
where 00
oyt) = [ B (t-0) ny(x) ax o)
~'%

The input voltage is now expressed as the sum of signal plus noise, viz,,

Ey(t) = 5(t) ¢ N(t) (11)
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80 thut Jor tie output one rets,
2
\ - R
E,{t) Z\’E‘J‘t) nJ(t)] (12)
where %0
3 L) = S(t-a) hJ(x) dx (13)
-
and
»
nj\t} - J/ Nit~x) h,(x) dx 14)
- 0D

We are now in a position to find the characteristic functicn for Eo(t)
for the case where N(t) is an uncorrelated Gaussian process.

The Characteristic Function

For any fixed t, let N(t) be normelly distributed. Further, let

N(tIS NZ’t25 - ;69 by (t=t,) (15)

where @ is the noise rower per unitr!iiqniaqy and f(t1‘~ tz) is a unit impulse

¢ e —

function at L - t2 . Tuen, by equation {14), for any fixed t , the nj(t)

will be normally distributed, and, furthermore, since the functions hJ are

orthogonal,
16)
- g f (
nJItS T (t) B0 5
where A:k is the Kronecher delta. Conseguently, for any fired tire, t, the

vector nit) defined by,

“’ A = [y 0) 4 my(e) ] a7

has 4 multidimensional probability distribution given by,
(¢)2

n
— dn ! ) -—%—— .
i - o {13)
dPLnU.S] Tr ﬁ;- e
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The charecteristic function §(5.t} of Eo(t.) is now given by,
1YE _(t)
%(j,t) = ave ¢ 5 °
‘1;2
® o 43ma, e, (t)en.| 2 -
Lo IRl o)
IR
-®
which may be integrated by completing the squares, giving
2
8, (%) A3 8,
-1/2 " 1~
/ “%E—O 1240 (20)

i(s.t) - .Er[l-as "Jﬂa] .

This is the result for the square law rectifier ccrresponding to that
of Kac and Siegert for ths sguare law envelope detector. Their result can be
obtained directly from this by observing that in the case of the envelope
detector for eacn variate of ncise present in the input an extra independent
variste of noise corresponding to the "out of phase" voltage component is
sdded to ths output. And, since the "j are independent, this has the effect
of multiplying the characteristic function, equation (20), by its value for
noise alone. Under these conditions the nolse power per cycle must be split
egually between the two components. For Kac and Siegert the noise power per
cycle is taken to be unity, so letting ﬂo - 172, sJ(t)2 - pz(t) . qz(t) -
az . dz (in their notation), and changing the exponernt nf the term in brackets
from -1/2 to -1, ylelds their formula,

Tha Case of No Audio Filter

The output probability density function, P'(Eo), can be derived in this
gase by inverting the charscteristlic function. Here we have,

F @) =1 (21)

£,(x) = dix =0) (22




«  From ejquation (5) we get,

- 1 \ =
g{u,v) f“.\u) f“(v) (23)
;— and from equction (6), we see that there is but sne eigenvalue, \, and eigen~
éj function, hi{uj. These are found ¢5 be,
Z
00
: P \2
A= / rlr\xl dx \216)
-
- o
- 7, @) | 2 ar
if
)
and,
- h{u) = T—rir(u) t25)
) A
The nversion os tre cheracteristic funciion is then found to be:
ot} o aL§
r -i§£° e S = f
PUE ) = / e : 4
o V1-2f %
. 1 Oki
E -
1 0 2] ~
—%[T * slt) if t) /Lo:i
e cosh %—‘
- AR 0 (26)
\,21~.¢0A E,
Now, ﬁok and s\t)zx are respectively the r.m.s. nolse power and signal power
entering the detector. ‘hen, normalizing rrese variablee sa follows:
Y-
it)
e (27)
" A
o
g
x =T (28)
4 o




we get,
- 5(X+Y)
Pr(Y) = e ~ cosh VXY (27)
Var;
This result way be varified e:sily by taking the distribution for the
noise voltage, n, into the detector ta be,
¥
aPin) = Sm e (30)
For rectification in the cetector, make the eubstitutinn,
—~.2 1
Y- \ﬂ"VX) \3")
This gives, {ﬁ s :;
ayY ) -%\VY‘R}Z ’i‘iﬁ”\:’i) 193
dP\Y) = 2m\f - e (32)

(-

which reduces immedistely to equaticn (27},
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Section 11

The Cumulants for the Output Probability Density

In principle, the probability density function for the output voltage
can be obtained from the characteristic function, equation (20), by a Fourier
inversion. However, except in very special cases, i.e,, infinitely wide audio
pass band, it is a very difficult problem to find the AJ and hj required to
determine i(g,t) explicitly, let alone to accomplish the inversion. The aiter-
native is to find suitable methods for approximating the density function
directly.

There are several well-known orthomormal systems suitable for approximating
probability density functions. Two of these systems, the Grems-Charlier and
the Laguerre, are discussed in Section III,

Particularly simple coefficients for these approximating series 2riss
when they are expressed in terms of the cumulants of the probablility density

function. The cumulants, K y 3Fe defined by the following identity:

uv(z‘ A ) 143 63

where §(}) is the characteristic function.* So, taking the logaritim of

§(§.t). equation (20), and expanding in powers of fg, we get,

HORRC AL S VR C AR & Ve WO LI TS
3 3

See M. G. Kendall, "“The Advanced Theory of Statistics,™ Vol. 1, for a oomplete
discussion of cumulants and their relation to statistical approxixation methods.
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The n times iter.'.ed xernel, gn(u,v), is defined by,
o)
gn(u,v) ‘J/T°b/ﬂ g(u.xl) gqxl,xz) e gixn_l,v) dxy ... dxn-l (35)
- 00
By virtue of eyustion 6} it is easily verified that,
©
PIE UL /gn‘\u.u) du (36)
4 3 J R
v ~00
and
®
IaP s, (0} = /) s5(t-u) g (u,v) S(t+v) du d 37)
v 8,(t) (t~u) g (u,v) S(t=v) du dv {
JU -
)

Thus, the formula for the nEﬂ cumulant becaomes,
® ®
K {(t) = (2f )n nidl gn(u,u) du+ 1 S{t-u) gn(u,v) S(t-v) du dv) (38
n o/ . 2Y}n ?:
- 00 - 00

which may be evaluated by straightforward quadratures,
Now, eguation (38) can be derived by a more direct rrocess, This is accom-
plished by noting that hn is equal to u certain «lpgebraic exprressisn involving

the first n moments, each of which can be 2valuated by raising Eokt) as expressad

in equation (L) to the appropriate power and then uversging.

The formulas for the higher moments become rrogressively more complicated
because of the large number of ways noise cun be paired with noise, but on
forming the required algetraic combination, eguatiosn (38) results., Since this
procedure is extremely tedious, a derivation of eguation (38) along these lines
will not be included, 1t is mentioned, however, Lecsuse it illustrates that the
condition of posiiive semi-definite.ess i~posed on the kernel g(u,v) via eauation

() to insure uniform convergence of the Mercer series, equaticn (+), is
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Tathematically sufficient but not necessary, ana does not constitute a
restriction on the vaiidity =f equation (38). In fact, equation {28) {is
valid for any kernel if the corresronding system output voltege has moments up

to and including the nﬁa. This will be the case in any practical receiver,

138)

b ¢




Section 111

Two Orthcnormal Systens

For approximating the output probability density functions two different
orthonormal systems are eapecially useful., The first, the Weber-Hermite
system which gives rise to the Gram-Charlier series, type A, is particularly
suited to those functions which aprnroximate the nommal, In terms of this

series, P'(So) is given by,*

a5 a g
PYWE )™ a = 9
T o K, ) (39)
where
2

&) d‘j 1 "x? 0)

g’ (x) = d_xj = (4
and

a = 1l

al -a, = 0 (41)

3 __"17_

a oK 3/2

For density functions which approximate the Rayleigh distribution, the
following series## which derives from the orthonormal system of Liguerre is

useful:

See Kendall, ibid, and Marcum (4) for discussions of convergence, methods
of grouping terms, evaluation of additional aJ and further cdetalls,

Ir. this form, the series seems to te due to Marcum (4), which see for evaluu-
ticn of additional JJ and detalls concerning the derivation,



where

and

[
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xl %% (JJ KIEO
PEINE, L7 ) (42)
[ .2 1
1S A
S R E SR R (43)
dx~
L] L ~
1
B e
o 2
r(ﬁ..)
K
K, K, (
2 2-—=*
. %2
3 ¢X 2
2
r\Elg‘ +3)
2




Section 1V

The Case of Gaussian I.F. and audio with 3inusoidal Gignal

To illustrate the methid consider the case in which the 1.F. has a Guussian
pass band of width o, centered at the very hrigh frequency, fo. Similarly let
the audio hove a Gaussian rass bvand of width‘d, centered at zero frequency

(see Figure (2)).

IF amphifier ——

Audio
amplifier

% t f ——
-1, 0
Figure (2)
2 2
Thus, \f‘fo) (f'fo)
T2 T T oa2
=e 20 ‘e 20 b5)



an

By mears of equations (5) and (35) we calculate,®

2
4Lno“ cos w (u=v) . 2 ;
2 exp - Lz%o-)" \u-‘V‘z . —_ \u'v)z (Ly)

8\“;") . ‘—'7==?——_
d+2¥ ’ 12 J ey
;‘ ) - - —— TR - - . B 5 ‘ T M A Mpa— - -'»-—:-l‘:—L}A;QL ““"‘_;;‘;
':’;ﬁ - g' .t -‘4‘;

3/2 3 ,
b2 cos wluw) g2 | 1082

2
g (u,v) = \/——-—;2-——=?=—“ exp = *—¢ (u=v)? —L'z (w2 (50)
Le2¥T 314 1+2 l+v

2.4
8n c* cos W (u~v) 2 .
3(“.‘*) - - - {2m) J 2 v (uv)? 2912 ’\uW)z (51

exp — (v
L2 )2y (20370 B P31 (bﬁ&dz)

ﬁ - - _— ot e o m—— v ‘. epn” "i: R !jf.:.ﬁ:.
% - F
¥ vhers, g 3‘ b it
: . N
Ye 3 (52
From these equations we get,
o
/ glu,u) du = 20V77 = &f (53)
~'00
oo
2
2, 20 1 A!z
g (u,u) du = -z ' (54)
./1; . 142 2 vie2r®
®
/ 3 9¢3n3/2 1 af .
g (ua,u) du = -3 3 (55)
/ 2437 243v°

-

These f>rmulas have been optained by neglecting the terms in cos wo(uw) which

represent the high fre-uency residue, They are vanishingly small for sufficiently
large W -
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Where the nolse bandwidth of the I.F. is defined to be,
7“‘{(:)'2 ot

J -

af = “’F - - 20'ry (56)
1 / aRY
2 [Furtfo)* Fyplofo)]

Let tre input sigunsl <oltage be,

S(t) = V% cos “t 57)

where & is the average power, (This is slso the average signal power applied

to the detsctor because of ejquation {45)). We rren c.lculate,®

®
//' 3(t-u) glu,v) S(t-v) du 4% = 3 ‘ <58}
‘4

®

- 2 AR ) - -]-'. éf
// S(t=u) g°u,v) 3{t-v) du dv 2‘/1”'? S (59)
-

~
<

S S -y S (50)
'c
\/\4“‘.“‘.‘(2’3}’ )

ISR

0
// S{t-u) g3(u,v) S{t-v) du dv =
- QD

TLus, by means of aguatiun (38; ve get for the firal tnree Zumuiants,

K, = xf'm] (61)
1.
z !— 4 e ]
K = X I TeQx. IAZ (62)
2 = ! 2

ie —ﬁ? 143X ) ] (63)
324 A A

— s -

L ]

Again, omitting the nigd frejuency terms in cos Uof\2t-u-v)a

R
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whare
N =g or (64)
is the average noise power at the input to the detector, and |

N

is the signal—to-nqiae power ratio at the input to the detector.

The output probubility density functions are now expresses in terms of
the orthonomal series discusnsd in Section III., They have be;n plotted in
Figures (3), (4) aud (5) for selectei veluas of the input signal-to-nicise ratio
X and bandwidth ratioy. As was pointed out in the preceding foctnotes the
treatment in t:ls section neglects the hish frequency detector residue terms,
Ccnaequsntly; on letting Y pass to zero we do not obtain the case of infinite
audio bandwidth discussed in Sestion I. Rather we obtain in the limit the well=-
acw: dansily function for the siuare law envelope datector with no additionsl
.audic filtering. These curves arc labeled ¥ = ¢ and the notation Y= 0 is reserved

f5:¢ the curves of ajuation (27).
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Section V

General Formula for Kn for the Gaussian System

We will now derive the Mercer series, squation (6), for g(u,v) and obtain
the generel expression for the nﬁg cumulant, This will serve as a check on
formulas (61) through (63).

To start with, wirite,

2
wdiioa (a)o(uq) -@223 {11* (uzwz) - ;i-z); W}

glu,v) = o 2 *2y (66)
N{OZ)f
and sake te suostitunions,
kg 2
ue 2L, (67)
4
BT @0

Fid

e 2 -
“haa “

4
[

Then equation (66) becomes,

2, 2 2
2 2 Lix - 2t
l.naz cos wo(u-v) - A '{ 2 . 2 }
: @ ~

glu,v) = 7 « 2 1-t (70)
1+2)
We now make use of Mehler's formula,® i.e,:
-{tz[xz‘ 2] - 2 } ® J
o 1-t V12 Y Hy(x) Hy () —2 (1)
J=0 3t 2

See Watson, Journal of the London Math. Soc., Vol. 8 (1933), 189,




and efter expanding cos ézo(u-v), we obtain the eigenvalue vairs,

3 |3

xJS - xjc -2 ‘ﬁ—l’z = (72)
1+ V1e2V [V1e2)%01

and the correspondins paire 2f «lgenfunctions,

-jlﬁ_m:ﬁ,z ﬁ (Tz.ﬁ_m_
2
*2 Hj \/{0272 sin Uou

n,> % () = Vo - ) (73)
o cos Wu
6) /25 In 1*2)2 °
Here Hj {x) is the Hemmite peclynomial deflined by,
i x2 d‘j -x2
N Hy(x) = (=)¥ &7 —7 0 (%)
dx
8) g Oc suwping with squation (72), w get ‘ .
) w n - -
9) | gb".)n -2 (x Z (O Cyn 2(20vT) (75)
) (Aoz 7 »1) -(v{ozy -1)
g Por the .mmm input signal defined by eqmation (57) q‘n"" :.?igg o ,?’;
’ ’, g i
00
10) . S'th‘ . V25 / cos wo(t-x) h*S,C (x) dx
J ’ Yo N
8/ sin ¥ t 9
- [=5_ V12¥# —;‘f—%—l——~—- ° }for i even| (76)
20/ ¥ (3/2) cos w_t
n) o §
= 3 for } odd
o




This result is vulid for R sufficiently high to Jjustify neglecting the high

frequency residue,

On summin. with equations (72) and (76) we get,

< @ o o)
> AJ“ sJ(t)z - > xxjs)n st\t)z ) ’\kjc)n sjc(t)2
J=C i=2 J=0

. 23:'2:%%“'1‘.«/1&»2 77)
g - (har )

Finally, by means cf eguations 34, 56, t4, and 65 we get for the n—=

cumulant,

(20" (a-1)! \A_;V *J (V{?;-Q‘ \/1*°r .‘ 78)
AT ARG R A

wh.ch reduces for n=l, 2, and 3 to equations (6L, £2}and (¢ 3) respectively.




Section VI

Signal Detectahilit- for thre Saussian System

lawson and Uhlenbeckig\xn discussing virious detection criteris suggest
a "deflection cr.tericn” which is based on messuring the change in the average
out,put brought ;bout by the signal., It is suggested that this change should
be comparable to the stundard deviation due ¢5 nolse alone in order that the
signal be "detectable,” In terms of the cumulanis, then, we have for detec~

tabilisy,

L — T (719)

helated to this criterison is one osbtainea by using the stundard deviation OF the

signal pius noise, i,e.,

7)
Theae quantiticy huve been investiguted by Smith(" for a variety of filter
shapee and detsctor characteristics. By direct substitution frocm equations (61)

and \t2) wa et for the Gaussian-square law syotem,

S, = X 142;3 (81)

(82)

(¥)
<o L. Lasscn wnd 3. E. Uhlenbsck, "Threshold 3ignals," Had. Lab. Cerles
No. 24, p. 1)1,
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For relatively narrow audio bandwidth, i.e,,Ylarge, which is the region

of inlerest for the reference, these expressions reduce to,

X
S°~ 2—177:‘\/2—)’ (83)

L X2
24\ A2/ x

These are in agreement with the formulas given by Smith,

(eu)

The "Ideal or Threshold Detector" provides another means for determining
signsl detectability, With this device a "detection" is called if the output
voltaze at any particular time exceeds a certain threshold, The level of this
threshold is then udjusted so5 that "false alarms", i,e., detections in the absence
of signal, are relatively infrequent. The probability of a dstection at any

instant can then be written,

00
Py(X.2) -4 P!(B,, X) d&, . (85)

and is necessarily an increasing function of signal strength.

Marcum(h) hus considered the case of & square law envelope detector with
video integration, i.e,, successive samples of the detector output are numeri-
cally uveraged rather than applied to a filter. The probability denaity function

for this averuged output is given (in our notation) by the formula,

a-1 E
T -a(f +X)

X
PUELXe) = § GGF) e Iy (2aV=) (86)

where a is the number of sumples averaged, The curulants for this distribution

sre given by the formula,
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L-14=-52
«Jle
n
g "o B (el)} (1on&} (87)
n ﬂn-l
the first few of wi.ch are,
* .
K = B(LeX) (88)
® by
L, = 3—;(1«21) (89)
DT 39 (90)
3 cz~ P

we now sei
a - \/l—::); (91
and notice tha’® fuirly good agreement exists boiwoen Lhwse cumulants ond “hoee
for the Gaussian audio aystem. Conwequentlw, ¥N142Y can be interpreted as the
approximate numtier of sampley averaged by the audio filtar.®
It is now poasible tc obtain a foirly good first approximation to the

rrobebility of detectiorn, Pd(l,'n, by reforrins to the appropriate curves in

referance (L).

RCEzi1¢

k3
This is not an exact sriatmen. because the vrobsbility Jdeneity Sunctios: for

the Gaussian systex zannct be put precisely intc the form of equation ‘84] w.leas
Y = 0, However, the wean values will correspond exicily, the variarce wiil »e
correct to within & fustor of lads then ¢2 in X, and che asymmotry will be in
error by a fector less than 4/3 in 13 and y‘j-in } &



